

Contents

	Overview
	Installation

	First steps

	Documentation

	License

	Development

	Installation

	Concept
	Dasher API

	Usage
	Getting started

	Callbacks

	Supported widgets

	Multiple callbacks

	Customizations

	Dasher API

	Reference
	Dasher

	Api

	Layouts

	Base classes

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	0.3.1 (2019-12-17)

	0.3.0 (2019-12-15)

	0.2.0 (2019-11-03)

	0.1.2 (2019-07-16)

	0.1.1 (2019-06-10)

Indices and tables

	Index

	Module Index

	Search Page

Overview

dasher: Generate interactive plotly dash dashboards in an instant

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/dasher]

	tests

	
[image: Travis-CI Build Status] [https://travis-ci.org/mfaafm/dasher] [image: Requirements Status] [https://requires.io/github/mfaafm/dasher/requirements/?branch=master]

	package

	
[image: PyPI Package latest release] [https://pypi.org/project/dasher] [image: PyPI Wheel] [https://pypi.org/project/dasher] [image: Supported versions] [https://pypi.org/project/dasher] [image: Supported implementations] [https://pypi.org/project/dasher]

[image: Commits since latest release] [https://github.com/mfaafm/dasher/compare/v0.3.1...master]

Installation

pip install dasher

You can also install the in-development version with:

pip install https://github.com/mfaafm/dasher/archive/master.zip

First steps

Creating a simple, interactive dashboard with a nice layout is as easy as this:

from dasher import Dasher
import dash_html_components as html

app = Dasher(__name__, title="My first dashboard")

@app.callback(
 _name="My first callback",
 _desc="Try out the widgets!",
 _labels=["Greeting", "Place"],
 text="Hello",
 place=["World", "Universe"],
)
def my_callback(text, place):
 msg = "{} {}!".format(text, place)
 return [html.H1(msg)]

if __name__ == "__main__":
 app.run_server(debug=True)

The resulting dashboard looks like this:

[image: hello world example]
The code for this dashboard can be found in examples/readme_example.py.

Documentation

To view the full project documentation, visit https://dasher.readthedocs.io/.

License

Free software, MIT License [https://raw.githubusercontent.com/mfaafm/dasher/v0.3.1/LICENSE]

Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

	Windows

	set PYTEST_ADDOPTS=--cov-append
tox

	Other

	PYTEST_ADDOPTS=--cov-append tox

Installation

At the command line:

pip install dasher

Concept

The idea behind dasher is to create auto-generated interactive plotly dash [https://dash.plot.ly/] dashboards
as easy as using the ipywidgets interact [https://ipywidgets.readthedocs.io/en/stable/examples/Using%20Interact.html] decorator in jupyter notebooks. That is,
by decorating a user defined callback function! Here, the keyword arguments of the
decorator define the interactive widgets and the callback
function must return what you want to show in the content container in the dashboard.

Dasher automatically renders a layout consisting of a header with the dashboard’s
title, a widget container providing the interactivity and the content container.
The only thing you need to do in the callback function is to process the input arguments
(which correspond to the widgets) and to return a list of the plotly dash components
that you want to appear in the content container!

The interactive widgets are automatically generated based on the type of the keyword
arguments of the decorator. For example, a string will result in an input field and
a list will become a dropdown box. Dasher supports the same widget abbreviations as
ipywidgets interact, see their widget abbreviations [https://ipywidgets.readthedocs.io/en/stable/examples/Using%20Interact.html#Widget-abbreviations].

Since the layout and the widget connections to the callback are taken care of by
dasher, you can concentrate on what you to display on the dashboard. As a result,
generating a stunning interactive visualization becomes a matter of minutes!

Dasher API

The functionality of the dasher.Dasher class is built upon the dasher
dasher.Api class. The latter implements the generation of widgets and callback
dependencies. It has convenience methods to generate widgets in unstyled
(basic dash components) and styled (as used in the dasher layout) versions. Hence, you
can use dasher to generate widgets quickly, while still using a fully custom dash
layout by using the dasher.Api directly!

Usage

Getting started

Creating a simple, interactive dashboard with a nice layout is as easy as this:

from dasher import Dasher
import dash_html_components as html

app = Dasher(__name__, title="My first dashboard")

@app.callback(
 _name="My first callback",
 _desc="Try out the widgets!",
 _labels=["Greeting", "Place"],
 text="Hello",
 place=["World", "Universe"],
)
def my_callback(text, place):
 msg = "{} {}!".format(text, place)
 return [html.H1(msg)]

if __name__ == "__main__":
 app.run_server(debug=True)

The resulting dashboard looks like this:

[image: hello world example]
The code for this dashboard can be found in examples/readme_example.py.

Callbacks

In general, a dasher callback is responsible for automatically generating an interactive
layout (including widgets) and connecting the generated widget to the decorated callback
function, so that it is executed when the state of the widget changes. The callback
function must return a list of dash components, which define the content that is
dependent on the widget state.

The layout of a callback contains:

	a navbar with the app title

	the name of the callback (_name)

	the (optional) description of the callback (_desc)

	the automatically generated widgets

	the main content area, which is defined by the return value of the callback

Supported widgets

The type of a keyword argument of the callback decorator determines which widget
will be generated. All supported types and the resulting widget (dash component)
are:

	bool: Radio Items

	str: Input field

	int: Slider, integer

	float: Slider, floats

	tuple: Slider
Can be (min, max) or (min, max, step). The type of all the tuple entries
must either be int or float, which determines whether an integer or
float slider will be generated.

	collections.Iterable: Dropdown menu
Typically a list or anything iterable.

	collections.Mapping: Dropdown menu
Typically a dict. A mapping will use the keys as labels shown in the
dropdown menu, while the values will be used as arguments to the callback
function.

	dash.development.base_component.Component: custom dash component
Any dash component will be used as-is. This allows full customization of a
widget if desired. The widgets value will be used as argument to
the callback function.

For a demo of all supported automatic widgets and an example how to use custom
components, see examples/widget_demo.py.

Multiple callbacks

dasher supports multiple callbacks and will autmatically create tabs to separate the
content of the callbacks.
An example dashboard with two callbacks can be found in examples/plot_demo.py
and it looks like this:

[image: multiple tabs / callbacks]

Customizations

dasher has many options for customizations, including:

	support for native dash components and custom widgets

	removal of the credits link in the navbar

	layout options on a global level (number of columns to display the widgets in)

	layout options on a callback level

	customization of the widget specification

Refer to the Reference for details or have a look at the customization example in
examples/customization_example.py, which shows some of the possible customizations.

Dasher API

The dasher.Api can be used to use dasher’s widget auto generation features
with a fully custom layout. See examples/api_example.py for an (arguably not very
useful) example.

Reference

	Dasher

	Api

	Layouts
	BootstrapLayout
	Widgets and WIDGET_SPEC

	Base classes

Dasher

	
class dasher.Dasher(name, title=None, layout='bootstrap', layout_kw=None, dash_kw=None)

	Dasher app.
Allows building of simple, interactive dash apps with minimal effort.
A tab is created by decorating a callback function, which returns the content layout
in the form of a list of dash components. Interactive widgets to control the
arguments of the callback function are generated automatically. The type of
widgets are determined based on the types of the keyword arguments (compatible to
the ipywidgets.interact decorator).

	Parameters

	
	name (str) – Name of the app, typically __name__.

	title (str, optional) – Title of the app.

	layout (str or DasherLayout subclass, optional) – Name of a built-in layout or custom layout (DasherLayout subclass)

	layout_kw (dict, optional) – Dictionary of keyword arguments passed to the layout class.

	dash_kw (dict, optional) – Dictionary of keyword arguments passed to the dash app.

	Variables

	
	api (dasher.Api) – The dasher.Api instance used for generating the app.

	app (dash.Dash) – The dash app.

	callbacks (dict of Callback) – Dictionary containing the registered callbacks.

	
callback(_name, _desc=None, _labels=None, _layout_kw=None, **kwargs)

	Decorator, which defines a callback function.
Each callback function results in a tab in the app. The keywords arguments
are the input arguments of the callback function. Simultaneously, the types of
each keyword defines which interactive widgets are generated for the tab.

The decorated callback function must return a list of dash components. It
defines the content of the tab, which is controlled by the generated interactive
widgets.

Supported widget types are determined by the layouts’ widget specification. The
built-in widget specifications are compatible with ipywidgets.interact
and support the following types, which generate the corresponding widgets:

	bool: Boolean choice / Radio Items

	str: Input field

	int: Slider, integer

	float: Slider, floats

	tuple: Slider
Can be (min, max) or (min, max, step). The type of all the tuple entries
must either be int or float, which determines whether an integer or
float slider will be generated.

	collections.Iterable: Dropdown menu
Typically a list or anything iterable.

	collections.Mapping: Dropdown menu
Typically a dict. A mapping will use the keys as labels shown in the
dropdown menu, while the values will be used as arguments to the callback
function.

	dash.development.base_component.Component: custom dash component
Any dash component will be used as-is. This allows full customization of a
widget if desired. The components value will be used as argument to
the callback function.

	Parameters

	
	_name (str) – Name of the callback.

	_desc (str, optional) – Optional description of the callback.

	_labels (list or dict, optional) – Labels for the widgets. May be either a list of labels for the keywords
**kwargs in the order of appearance or a dictionary mapping keywords to
the desired labels. If None, the keywords are used for the labels
directly.

	_layout_kw (dict, optional) – Dictionary of keyword arguments passed to the add_callback method of the
layout, which may be used to override layout defaults for individual
callbacks.

	kwargs – Keyword arguments that are the input arguments to the callback function,
which also define the widgets that are generated for the dashboard.
Obviously, reserved keywords are _name, _desc, _labels and _layout.

	Returns

	function_wrapper (callable) – Wrapped function that generates a dashboard tab.

See also

	layout.bootstrap.widgets.WIDGET_SPEC()

	Bootstrap widget specification

	layout.bootstrap.layout.BootstrapLayout()

	Bootstrap layout

	
get_flask_server()

	Returns the flask app object.

	
run_server(*args, **kw)

	Runs the dasher app server by calling the underlying dash.Dash.run_server
method. Refer to the documentation of dash.Dash.run_server for details.

	Parameters

	
	args – Positional arguments passed to dash.Dash.run_server.

	kw – Keyword arguments passed to dash.Dash.run_server.

Api

	
class dasher.Api(title=None, layout='bootstrap', layout_kw=None)

	Dasher api.
The api allows generation of widgets and dash dependencies (for
instances of DasherCallback). It is used by Dasher to generate interactive
apps.

	Parameters

	
	title (str, optional) – Title of the app.

	layout (str or DasherLayout subclass, optional) – Name of a built-in layout or custom layout (DasherLayout subclass)

	layout_kw (dict, optional) – Dictionary of keyword arguments passed to the layout class.

	
static generate_callback_id(name)

	Get callback id from name.
It is a lowercase version of name, where all non-alphanumeric characters are
replaced by underscores.

	Parameters

	name (str) – The callback name to generate an id from.

	Returns

	str – Lowercase version of name, where all non-alphanumeric characters are
replaced by underscores.

	
static generate_dependencies(widgets, output_id, output_dependency='children')

	Generate input and output dependencies for a list of widgets.
It generates an dash.dependencies.Input for each widgets’ underlying dash
component using the value property. An dash.dependencies.Output is
generated for output_id using the children property.

	Parameters

	
	widgets (list of BaseWidget) – List of dasher widgets to generate dependencies for.

	output_id (str) – Id of the output.

	output_dependency (str, optional) – Property for the output dependency.

	Returns

	
	output (dash.dependencies.Output) – Generated output dependency.

	input_list (list of dash.dependencies.Input) – List of generated input dependencies.

	
generate_widget(name, x, label=None)

	Generate a dasher widget, which is a styled and labeled interactive
component.

The type of the interactive component is determined
based on the type of x using the selected widget specification of the layout.

	Parameters

	
	name (str) – Name of the widget.

	x (object of supported type) – Object used to determine which interactive component is returned.

	label (str or None, optional) – Label of the component.

	Returns

	dasher.base.BaseWidget – Generated dasher widget.

See also

	get_widget()

	Generates widget and returns the layout of the widget.

	get_component()

	Generates widget and returns the widgets’ component.

	
generate_widgets(kw, labels=None, group=None)

	Generate dasher widgets based on a dictionary.

	Parameters

	
	kw (dict) – The keys of the dictionary define the names of the widgets and the type of
the values is used to determine the type of the interactive widgets based on
the selected component specification.

	labels (list or dict, optional) – Labels for the widgets. May be either a list of labels for kw in the order
of appearance or a dictionary mapping the keys of kw to the desired
labels. If None, the keys of kw are used for the labels directly.

	group (str, optional) – If not None, group will be used as a suffix for each
component / widget name in order to group widgets.

	Returns

	list of dasher.base.BaseWidget – List of generated dasher widgets.

See also

	get_widgets()

	Generates widgets and returns the layout of the widgets.

	get_components()

	Generates widgets and returns the component of the widgets.

	
get_component(name, x)

	Generate an interactive dash component.
This is a convenience method, which first calls the generate_widget method
and then directly returns the un-styled and un-labeled component of the
widget.

	Parameters

	
	name (str) – Name of the component.

	x (object of supported type) – Object used to determine which interactive component is returned.

	Returns

	dash.development.base_component.Component – Generated dash component.

	
get_components(kw, labels=None, group=None)

	Generate interactive components based on a dictionary.
This is a convenience method, which first calls the generate_widgets method
and then directly returns a list containing the un-styled and un-labeled
component of the widgets.

	Parameters

	
	kw (dict) – The keys of the dictionary define the names of the widgets and the type of
the values is used to determine the type of the interactive widgets based on
the selected component specification.

	labels (list or dict, optional) – Labels for the widgets. May be either a list of labels for kw in the order
of appearance or a dictionary mapping the keys of kw to the desired
labels. If None, the keys of kw are used for the labels directly.

	group (str, optional) – If not None, group will be used as a suffix for each
component / widget name in order to group widgets.

	Returns

	list of dash.development.base_component.Component – List of generated interactive components.

	
get_widget(name, x, label=None)

	Generate a styled and labeled interactive dash component.
This is a convenience method, which first calls the generate_widget method
and then directly returns the layout of the widget.

	Parameters

	
	name (str) – Name of the component.

	x (object of supported type) – Object used to determine which interactive component is returned.

	label (str or None, optional) – Label of the component.

	Returns

	dash.development.base_component.Component – Generated dash component.

	
get_widgets(kw, labels=None, group=None)

	Generate interactive widgets based on a dictionary.
This is a convenience method, which first calls the generate_widgets method
and then directly returns a list containing the layout of the widgets.

	Parameters

	
	kw (dict) – The keys of the dictionary define the names of the widgets and the type of
the values is used to determine the type of the interactive widgets based on
the selected component specification.

	labels (list or dict, optional) – Labels for the widgets. May be either a list of labels for kw in the order
of appearance or a dictionary mapping the keys of kw to the desired
labels. If None, the keys of kw are used for the labels directly.

	group (str, optional) – If not None, group will be used as a suffix for each
component / widget name in order to group widgets.

	Returns

	list of dash.development.base_component.Component – List of generated interactive components.

	
static register_callback(app, callback)

	Register a dasher callback with dependencies in the dash app.

	Parameters

	
	app (dash.Dash) – The dash app.

	callback (DasherCallback) – The dasher callback to register.

Layouts

BootstrapLayout

	
class dasher.layout.bootstrap.BootstrapLayout(title, widget_spec=OrderedDict([((<class 'dash.development.base_component.Component'>, <class 'dasher.base.CustomWidget'>), <class 'dasher.layout.bootstrap.widgets.PassthroughWidget'>), (<class 'bool'>, <class 'dasher.layout.bootstrap.widgets.BoolWidget'>), (<class 'str'>, <class 'dasher.layout.bootstrap.widgets.StringWidget'>), ((<class 'numbers.Real'>, <class 'numbers.Integral'>), <class 'dasher.layout.bootstrap.widgets.NumberWidget'>), (<class 'tuple'>, <class 'dasher.layout.bootstrap.widgets.TupleWidget'>), (<class 'collections.abc.Iterable'>, <class 'dasher.layout.bootstrap.widgets.IterableWidget'>)]), credits=True, include_stylesheets=True, widget_cols=2)

	Dasher boostrap layout.
This layout utilizes dash_bootstrap_components to build the app layout.

	Parameters

	
	title (str) – Title of the app.

	widget_spec (OrderedDict, optional) – Widget specification.
Default: dasher.layout.bootstrap.widgets.WIDGET_SPEC.

	credits (bool, optional) – If true, shows a link to dasher’s github page in the navigation bar.
Default: True.

	include_stylesheets (bool, optional) – If true, includes the standard bootstrap theme as external stylesheets. Set
it to false to use a customized bootstrap theme. Default: True.

	widget_cols (int, optional) – Group the interactive components into widget_cols number of columns.
Default: 2.

	Variables

	
	widget_cols (int) – Group the interactive components into widget_cols number of columns.

	include_stylesheets (bool) – If true, includes the standard bootstrap theme as external stylesheets.

	external_stylesheets (list of str, optional) – Only present of include_stylesheets is True. It contains a list with
the standard bootstrap theme as its’ only value.

	navbar (dash_bootstrap_components.NavbarSimple) – Navigation bar of the layout.

	body (dash_bootstrap_components.Container) – Container for the body of the app, containing the tab control and the tab
contents div.

	layout (dash_html_components.Div) – Layout of the app. The div contains navbar and body.

	tabs (dash_bootstrap_components.Tabs) – Tab control to separate the layout of the callbacks.

	tabs_content (dash_html_components.Div) – Content div used to render the selected tab.

	callbacks (dict of DasherCallback) – Dictionary containing the callbacks present in the layout.

	
add_callback(callback, app, **kwargs)

	Add callback to the layout.

	Parameters

	
	callback (DasherCallback) – The dasher callback to add to the layout.

	app (dash.Dash) – The dash app.

	**kwargs – Keyword arguments to override default layout settings for a callback.

	
render_base_layout()

	Create base layout with navigation bar and body container.

	
render_callback(id)

	Callback method to switch between tabs.

	Parameters

	id (str) – ID of the callback to render.

	Returns

	dash.development.base_component.Component – Layout of the callback.

	
render_card(callback, **kwargs)

	Renders a card with the interactive components and the output container.

	Parameters

	
	callback (dasher.base.Callback) – The callback to render the card for.

	**kwargs – Keyword arguments to override default layout settings.

	Returns

	dash_bootstrap_components.Card – Layout of the card.

Widgets and WIDGET_SPEC

Widget specification and implementation of the interactive
dasher widgets based on dash_bootstrap_components.

The widget specification supports the following types and generates the corresponding
interactive widgets:

	bool: Radio Items

	str: Input field

	int: Slider, integer

	float: Slider, floats

	tuple: Slider
Can be (min, max) or (min, max, step). The type of all the tuple entries
must either be int or float, which determines whether an integer or
float slider will be generated.

	collections.Iterable: Dropdown menu
Typically a list or anything iterable.

	collections.Mapping: Dropdown menu
Typically a dict. A mapping will use the keys as labels shown in the
dropdown menu, while the values will be used as arguments to the callback
function.

	dash.development.base_component.Component: custom dash component
Any dash component will be used as-is. This allows full customization of a
widget if desired. The widgets value will be used as argument to
the callback function.

	
class dasher.layout.bootstrap.widgets.BoolWidget(name, x, label=None, dependency='checked')

	RadioItems component used for booleans.

	Parameters

	
	name (str) – Name of the widget.

	x (tuple of int or float) – Tuple used to configure the slider.

	label (str, optional) – The label for the component.

	dependency (str, optional) – The attribute used for the dash.dependencies.Input dependency.
Default: “checked”.

	
component

	Abstract property. The implementation of the getter method in the child
class must return the concrete component.

	Returns

	dash.development.base_component.Component – Generated dash component.

	
layout

	Abstract property. The implementation of the getter method in the child
class must return the final layout of the widget.

	Returns

	dash.development.base_component.Component – Generated dash component.

	
class dasher.layout.bootstrap.widgets.BootstrapWidget(name, x, label=None, dependecy='value')

	Abstract base class for Bootstrap widgets.
Implements the default layout property, which is used by most the widgets.

	
layout

	Abstract property. The implementation of the getter method in the child
class must return the final layout of the widget.

	Returns

	dash.development.base_component.Component – Generated dash component.

	
class dasher.layout.bootstrap.widgets.IterableWidget(name, x, label=None, dependecy='value')

	Dropdown component used for iterables and mappings.

	
component

	Abstract property. The implementation of the getter method in the child
class must return the concrete component.

	Returns

	dash.development.base_component.Component – Generated dash component.

	
class dasher.layout.bootstrap.widgets.NumberWidget(name, x, label=None, dependency='value')

	Widget used for numbers.

	
class dasher.layout.bootstrap.widgets.PassthroughWidget(name, x, label=None)

	Passthrough for custom dash components.

	
class dasher.layout.bootstrap.widgets.StringWidget(name, x, label=None, dependecy='value')

	Input field component used for for strings.

	
component

	Abstract property. The implementation of the getter method in the child
class must return the concrete component.

	Returns

	dash.development.base_component.Component – Generated dash component.

	
class dasher.layout.bootstrap.widgets.TupleWidget(name, x, label=None, dependency='value', slider_max_ticks=8, slider_float_steps=60)

	Slider components used for tuples of numbers.

	Parameters

	
	name (str) – Name of the widget.

	x (tuple of int or float) – Tuple used to configure the slider.

	label (str, optional) – The label for the component.

	dependency (str, optional) – The attribute used for the dash.dependencies.Input dependency.
Default: “value”.

	slider_max_ticks (int, default 8) – Maximum number of ticks to draw for the slider.

	slider_float_steps (int, default 60) – Number of float steps to use if step is not defined explicity.

	
component

	Abstract property. The implementation of the getter method in the child
class must return the concrete component.

	Returns

	dash.development.base_component.Component – Generated dash component.

	
dasher.layout.bootstrap.widgets.WIDGET_SPEC = OrderedDict([((<class 'dash.development.base_component.Component'>, <class 'dasher.base.CustomWidget'>), <class 'dasher.layout.bootstrap.widgets.PassthroughWidget'>), (<class 'bool'>, <class 'dasher.layout.bootstrap.widgets.BoolWidget'>), (<class 'str'>, <class 'dasher.layout.bootstrap.widgets.StringWidget'>), ((<class 'numbers.Real'>, <class 'numbers.Integral'>), <class 'dasher.layout.bootstrap.widgets.NumberWidget'>), (<class 'tuple'>, <class 'dasher.layout.bootstrap.widgets.TupleWidget'>), (<class 'collections.abc.Iterable'>, <class 'dasher.layout.bootstrap.widgets.IterableWidget'>)])

	Widget specification.

Base classes

	
class dasher.base.BaseLayout(title, widget_spec, credits=True)

	Abtract base class of a dasher layout, which is responsible for creating the
layout of the dasher app.

The widget specification (widget_spec) is used to determine the types and the
layout of the automatically generated interactive widgets.

A layout class also handles the addition of callbacks via the add_callback method
and creates a suitable form of separation between the callbacks in the app layout.
The standard way to do this is to generate a separate tab for each callback.

A child class must implement the abtract add_callback method and create the final
app layout as its’ layout attribute. If the layout needs external stylesheets,
the child class must announce this by creating an external_stylesheets attribute
containing the list of required external stylesheets.

	Parameters

	
	title (str) – Title of the dash app.

	widget_spec (OrderedDict) – Widget specification used to determine the types of the interactive widgets.

	credits (bool) – If true, dasher / layout credits are shown in the app.

	Variables

	
	title (str) – Title of the dash app.

	credits (bool) – If true, dasher / layout credits are shown in the app.

	layout (list of dash.development.base_component.Component) – The final app layout (is assigned to the layout property of the dash app).

	
add_callback(callback, app, **kwargs)

	The implementation must handle the addition of callbacks to the layout and
provide a suitable form of separation between the callbacks in the app layout.
The standard way to do this is to generate a separate tab for each callback.

	Parameters

	
	callback (Callback) – The callback to add to the layout.

	app (dash.Dash) – The dash app.

	**kwargs – Keyword arguments to override default layout settings for a callback.

	
class dasher.base.BaseWidget(name, x, label=None, dependecy='value')

	Abstract base class of a dasher widget.
A dasher widget is an interactive control, which consists of an interactive dash
component, a label and a final layout.

	Parameters

	
	name (str) – Name of the widget.

	x (object) – The object, whose type determines the type of the widget.

	label (str) – The label for the dash component.

	layout (dash.development.base_component.Component) – The layout is a styled and labeled version of component.

	dependency (str, optional) – The attribute used for the dash.dependencies.Input dependency.
Default: “value”.

	Variables

	
	name (str) – Name of the widget.

	x (object) – The object, whose type determines the type of the widget.

	component (DasherComponent) – The interactive dash component.

	label (str) – The label for the dash component.

	layout (dash.development.base_component.Component) – The layout is a styled and labeled version of component.

	dependency (str, optional) – The attribute used for the dash.dependencies.Input dependency.
Default: “value”.

	
component

	Abstract property. The implementation of the getter method in the child
class must return the concrete component.

	Returns

	dash.development.base_component.Component – Generated dash component.

	
layout

	Abstract property. The implementation of the getter method in the child
class must return the final layout of the widget.

	Returns

	dash.development.base_component.Component – Generated dash component.

	
class dasher.base.Callback(name, description, f, kw, labels, widgets, outputs, inputs, layout_kw)

	This class contains the specification of a callback.

	Parameters

	
	name (str) – Name of the callback.

	description (str or None) – Additional description of the callback.

	f (callable) – The callback function itself.

	kw (dict) – The keyword arguments passed to the callback decorator.

	labels (list or dict or None) – Labels for the widgets.

	widgets (list of BaseWidget) – Generated dasher widgets for the callback.

	outputs (dash.dependencies.Output or list of dash.dependencies.Output) – Output dependencies for the callback

	inputs (list of dash.dependencies.Input) – Input dependencies for the callback

	layout_kw (dict or None) – Keyword arguments to override default layout settings for the callback.

	Variables

	
	name (str) – Name of the callback.

	description (str or None) – Additional description of the callback.

	f (callable) – The callback function itself.

	kw (dict) – The keyword arguments passed to the callback decorator.

	labels (list or dict or None) – Labels for the widgets.

	widgets (list of BaseWidget) – Generated dasher widgets for the callback.

	outputs (dash.dependencies.Output or list of dash.dependencies.Output) – Output dependencies for the callback.

	inputs (list of dash.dependencies.Input) – Input dependencies for the callback.

	layout_kw (dict or None) – Keyword arguments to override default layout settings for the callback.

	
class dasher.base.CustomWidget(component, dependency='value')

	Wrapper class for custom widgets.
Used to fully customize a widget including the dependency attribute.

	Parameters

	
	component (dash.development.base_component.Component) – Custom interactive dash component.

	dependency (str, optional) – The attribute used for the dash.dependencies.Input dependency.
Default: “value”.

	
class dasher.base.WidgetPassthroughMixin(name, x, label=None)

	Passthrough mixin to support custom dash components and custom widgets.

	
component

	Abstract property. The implementation of the getter method in the child
class must return the concrete component.

	Returns

	dash.development.base_component.Component – Generated dash component.

	
dasher.base.generate_callback_id(name)

	Get callback id from name.
It is a lowercase version of name, where all non-alphanumeric characters are
replaced by underscores.

	Parameters

	name (str) – The callback name to generate an id from.

	Returns

	str – Lowercase version of name, where all non-alphanumeric characters are
replaced by underscores.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/mfaafm/dasher/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

dasher could always use more documentation, whether as part of the
official dasher docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/mfaafm/dasher/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up dasher for local development:

	Fork dasher [https://github.com/mfaafm/dasher]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:mfaafm/dasher.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes run all the checks and docs builder with tox [https://tox.readthedocs.io/en/latest/install.html] one command:

tox

Further information on developing, can be found in the cookiecutter template [https://github.com/ionelmc/cookiecutter-pylibrary]
that was used to set up this project.

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/mfaafm/dasher/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

	Martijn Arts - https://github.com/mfaafm/

Changelog

0.3.1 (2019-12-17)

	Update and fix documentation.

	Fix documentation build using .readthedocs.yml.

0.3.0 (2019-12-15)

	Generate id property from name for every callback. The id is now used to
identify the callback, while name is used in the layout for displaying.

0.2.0 (2019-11-03)

	Use cookiecutter to create a proper project structure.

	Refactor core functionality into dasher.Api.

	Combine widget factory and template logic into unified layout implementation.

	Fix resizing bug when switching tabs by using callback-based tab switching.

	Add support of fully custom widgets.

	Add documentation.

	Add more examples.

0.1.2 (2019-07-16)

	Add _labels argument to the callback decorator to enable customization of
widget labels.

0.1.1 (2019-06-10)

	Add credits argument to DasherStandardTemplate to toggle whether to show credits
in the navbar.

	Update docstrings and documentation.

	Add margin to navbar.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dasher	

 	
 	
 dasher.base	

 	
 	
 dasher.layout.bootstrap	

 	
 	
 dasher.layout.bootstrap.widgets	

Index

 A
 | B
 | C
 | D
 | G
 | I
 | L
 | N
 | P
 | R
 | S
 | T
 | W

A

 	
 	add_callback() (dasher.base.BaseLayout method)

 	(dasher.layout.bootstrap.BootstrapLayout method)

 	
 	Api (class in dasher)

B

 	
 	BaseLayout (class in dasher.base)

 	BaseWidget (class in dasher.base)

 	
 	BoolWidget (class in dasher.layout.bootstrap.widgets)

 	BootstrapLayout (class in dasher.layout.bootstrap)

 	BootstrapWidget (class in dasher.layout.bootstrap.widgets)

C

 	
 	Callback (class in dasher.base)

 	callback() (dasher.Dasher method)

 	component (dasher.base.BaseWidget attribute)

 	(dasher.base.WidgetPassthroughMixin attribute)

 	(dasher.layout.bootstrap.widgets.BoolWidget attribute)

 	(dasher.layout.bootstrap.widgets.IterableWidget attribute)

 	(dasher.layout.bootstrap.widgets.StringWidget attribute)

 	(dasher.layout.bootstrap.widgets.TupleWidget attribute)

 	
 	CustomWidget (class in dasher.base)

D

 	
 	Dasher (class in dasher)

 	dasher.base (module)

 	
 	dasher.layout.bootstrap (module)

 	dasher.layout.bootstrap.widgets (module)

G

 	
 	generate_callback_id() (dasher.Api static method)

 	(in module dasher.base)

 	generate_dependencies() (dasher.Api static method)

 	generate_widget() (dasher.Api method)

 	generate_widgets() (dasher.Api method)

 	
 	get_component() (dasher.Api method)

 	get_components() (dasher.Api method)

 	get_flask_server() (dasher.Dasher method)

 	get_widget() (dasher.Api method)

 	get_widgets() (dasher.Api method)

I

 	
 	IterableWidget (class in dasher.layout.bootstrap.widgets)

L

 	
 	layout (dasher.base.BaseWidget attribute)

 	(dasher.layout.bootstrap.widgets.BoolWidget attribute)

 	(dasher.layout.bootstrap.widgets.BootstrapWidget attribute)

N

 	
 	NumberWidget (class in dasher.layout.bootstrap.widgets)

P

 	
 	PassthroughWidget (class in dasher.layout.bootstrap.widgets)

R

 	
 	register_callback() (dasher.Api static method)

 	render_base_layout() (dasher.layout.bootstrap.BootstrapLayout method)

 	
 	render_callback() (dasher.layout.bootstrap.BootstrapLayout method)

 	render_card() (dasher.layout.bootstrap.BootstrapLayout method)

 	run_server() (dasher.Dasher method)

S

 	
 	StringWidget (class in dasher.layout.bootstrap.widgets)

T

 	
 	TupleWidget (class in dasher.layout.bootstrap.widgets)

W

 	
 	WIDGET_SPEC (in module dasher.layout.bootstrap.widgets)

 	
 	WidgetPassthroughMixin (class in dasher.base)

 _static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_images/hello_world.gif
My first dashboard eatec

My first callback

Try out the widgets!
Greeting Place
Hello World v

Hello World!

_images/hello_world1.gif
My first dashboard eatec

My first callback

Try out the widgets!
Greeting Place
Hello World v

Hello World!

_images/tabs.gif
Interactive plotting demo

Line plot Bar plot

Line plot

Try it out!
y-Axis column

a v

2.5

[
[
v
N
N
v
w

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Overview

 		
 Installation

 		
 First steps

 		
 Documentation

 		
 License

 		
 Development

 		
 Installation

 		
 Concept

 		
 Dasher API

 		
 Usage

 		
 Getting started

 		
 Callbacks

 		
 Supported widgets

 		
 Multiple callbacks

 		
 Customizations

 		
 Dasher API

 		
 Reference

 		
 Dasher

 		
 Api

 		
 Layouts

 		
 BootstrapLayout

 		
 Base classes

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 0.3.1 (2019-12-17)

 		
 0.3.0 (2019-12-15)

 		
 0.2.0 (2019-11-03)

 		
 0.1.2 (2019-07-16)

 		
 0.1.1 (2019-06-10)

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

